The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel
نویسندگان
چکیده
منابع مشابه
The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel
*Correspondence: [email protected] 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK Full list of author information is available at the end of the article Abstract We establish analogues of the mean value theorem and Taylor’s theorem for fractional differential operators defined using a Mittag–Leffler kernel. We formulate a new model for the fract...
متن کاملFrobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کاملMean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel Kernel
The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the method.
متن کاملThe First Mean Value Theorem for Integrals
For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...
متن کاملThe Mean Value Theorem and Its Consequences
The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2018
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1543-9